@ughaibu,
Infinity appears to not have a characteristic of a number being that a number has to be definite. However, let's assume that on this I am mistaken. Let's treat infinity like we treat specific numbers.
If the configurations are infinite, then there are no configurations that are not. As such, every configuration that would preclude the possibility of another configuration also exists. If a "Universe 1" exists, but we have infinite universes, another universe, "Universe 1b" that has the properties of being able to negate the conditions necessary for "Universe 1" to exist. Perhaps it has the property such that somewhere within itself a singularity so hot emerges that it punctures Universe 1 and absorbs its mass before it can exist. Perhaps it contains powerful beings that can navigate higher dimensions and they destroy the other universe. The exact nature of this interaction is irrelevant. The point is, that if you have infinite things, then there is nothing that isn't, including things that make other things not be. You can substitue universes for objects within a universe too. If there are infinite objects in a universe, then there exists an object that precludes the existence for each object.
However, this is not subtraction. The Universe 1b is not the "negative" of Universe 1, it is an existant universe that has the properties of causing Universe 1 to not be. To demonstrate this, we find the average, not the difference. To do this:
∞/∞=1
In treating infinity as a number, the total number of universes is 1. I realize that infinity divided by itself is NOT equal to 1, I'm just saying if we're going to treat it as though it is a number things can be equal to, it would. Any number something can be equal to divided by itself is 1. Really, ∞/∞ is an indefinite value... it is undefined.
I also say this whole line of thinking seems nonsense, because Universe 1b would also have a Universe 1b_b which would preclude its existence. However, if this all COULD happen "simultaneously" and infinity be a number of things, the average is still 1, not infinity.
It seems to me that the number of universes is somewhere between 1 and a really high number, but that high number is not infinity.