@de budding,
de_budding;15402 wrote:does 'if' get a symbol or have any impact on sentences?
Dan.
Yes. Imo, we can name the propositional operators in this way:
(p -> q) is read (if p then q), or (p only if q).
(p <- q) is read (if q then p), or (p if q).
(p <-> q) is read (p is equivalent to q), or (p if and only if q).
(p <-> q) <-> ((p if q) and (p only if q)).
For the positive functors we have:
(tautology)
(p is true) = p
(q is true) = q
(p v q) = (p or q)
(p & q) = (p and q)
(p -> q) = (p only if q).
(p <- q) = (p if q)
(p <-> q) = (p if and only if q).
For the negative functors we have:
(contradiction)
~p = (not p)
~q = (not q)
(p / q) = (p nor q) ...~(p v q)
(p | q) = (p nand q) ...~(p & q)
(p -|-> q) = (p nonly if q) ...~(p -> q)
(p <-|- q) = (p nif q) ...~(p <- q)
(p <-|-> q) = (p xor q) ...~(p <-> q).
eg. ((p if q) and q) only if p, is a theorem.
ie. ((p <- q) & q) -> p.
ie. ((q -> p) & q) -> p.
eg. (p nif q) iff (q nonly if p) ....~(p <- q) <-> ~(q -> p).
etc.