@unprocessed9,
P v Q : (P v R) -> (P v(Q & R))
1. PvQ | Premise
2. PvR | Provisional Assumption
3. -P > R | Arrow Rule, 2
4. -P > Q | Arrow Rule, 1
5. -(Pv(Q&R)) | Provisional Assumption
6. -P & -(Q&R) | DeMorgan's Law, 5
7. -P | Conj. Out, 6
8. R | Modus Ponens, 3, 7
9. Q | Modus Ponens, 4, 7
10. -(Q&R) | Conj. Out, 6
11. Q&R | Conj. In, 8, 9
12. -(Q&R) & (Q&R). | Conj. In, 10, 11
13. Pv(Q&R) | Indirect proof, 5-12
14. Therefore, (PvR) > (Pv(Q&R)) | Conditional proof, 2-13
P : Q -> (P <->Q)
1. P | Premise
2. Q | Provisional Assumption
3. P | Provisional Assumption
4. Q | Copy Provisional Assumption (Q)
5. P > Q | Conditional Proof
6. Q | Provisional Assumption
7. P | Copy Premise (P)
8. Q > P | Conditional proof
9. P <> Q | Conjunction IN, 5, 8
10. Q > (P <> Q) | Conditional Proof
P v (Q v R) : Q v (P v R)
Ew, I've always hated this one. Doing it the "primitive" way is a nightmare. In fact, just about any "OR"-centered argument is a tedious task to prove.
1. P v ( Q v R) | Premise
2. -P > (Q v R) | Arrow, 1
3. -P > (-Q > R) | Arrow, 2
4. -Q & -(P v R) | Provisional Assumption
5. -Q & (-P & -R) | DeMorgan's, 4
6. -Q | Conj Out, 5
7. -P & -R | Conj. Out, 5
8. -P | Conj. Out, 7
9. -R | Conj. Out, 7
10. -Q > R | Modus Ponens, 3, 8
11. R | Modus Ponens, 10, 6
11. R & -R | Conj In11, 9
13. -(-Q & -(P v R)) | Indirect proof/reductio ad absurdum, 4-11
14. Therefore, Q v (P v R) | DeMorgan's, 13
If you can't use derived rules or if you're using some conservative/restrictive/artificial system imposed by your professor for "educational"/"academic" purposes, sorry.
Basically, every "rule" or "law" means the formula from which the subsequent formula was derived is logically equivalent with that derived formula. Derived rules take two logically equivalent formulas and permit you to interchange them.